	[image: image1.png]



	                                      ISO/IEC JTC 1/SC 29/WG1N6080


                                       Date: 2012-06-08


	ISO/IEC JTC 1/SC 29/WG 1

(ITU-T SG16)

Coding of Still Pictures

JBIG                              JPEG

Joint Bi-level Image                     Joint Photographic 

 Experts Group                            Experts Group



TITLE:
JPEG 9 Lossless Coding


SOURCE:

InfAI Leipzig; Independent JPEG Group

PROJECT:

JPEG

STATUS:

Contribution, Information, For Review
REQUESTED

ACTION:

For information

DISTRIBUTION:
WG1 delegates, WG1 Distribution List
Contact:

Forschungsgruppen- & Projektleiter - Dr. Andrej Werner
Institut für Angewandte Informatik (InfAI) e.V. an der Universität Leipzig
Institut für Wirtschaftsinformatik / Universität Leipzig
Grimmaische Straße 12, D - 04109 Leipzig
Internet: http://www.iwi.uni-leipzig.de
Tel: +49 (0)341 - 97 33725, Email: awerner@wifa.uni-leipzig.de
Contact:

Organizer Independent JPEG Group – Guido Vollbeding

Zapfenweg 28, 06120 Halle (Saale), Germany

Tel: +49 345 6851663,  Fax: +49 345 2046335,  Email: vollbeding@infai.org

INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG1

CODING OF STILL PICTURES

ISO/IEC JTC 1/SC 29/WG 1 N6080

Date: 2012-06-08 
 

Title:      JPEG 9 Lossless Coding

Source:  InfAI Leipzig; Independent JPEG Group

Date:      2012-06-08

CONTENTS

Page

31
References


32
Introduction


43
The Approach


64
The Results


105
The Realization




1 References

[1] 
“ITU-T JPEG-Plus Proposal for Extending ITU-T T.81 for Advanced Image Coding”,


Geneva, Switzerland, April 2006, Revision 3

[2]
ISO/IEC JTC1/SC29/WG1 N 5799 “Evolution of JPEG”, June/July 2011, Berlin, Germany

[3]
M. Weinberger, G. Seroussi, G. Sapiro, “The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization into JPEG-LS”, Hewlett-Packard Laboratories Technical Report No. HPL-98-193R1, November 1998, revised October 1999


[4]
INTERNATIONAL STANDARD ISO/IEC 14495-2, ITU-T RECOMMENDATION T.870:

“Information technology – Lossless and near-lossless compression of continuous-tone still images: Extensions”, 03/2002 (JPEG-LS part 2)

[5]
Kodak Lossless True Color Image Suite http://www.r0k.us/graphics/kodak/
[6]
InfAI JPEG Development Site http://www.infai.org/jpeg/
2 Introduction

The JPEG continuous-tone still image coding standard is widely deployed in applications for lossy image compression. Sometimes a lossless mode of operation is required for application, and while the JPEG proposals for this purpose were rarely implemented for practical application, other methods from outside the JPEG domain had to fill this gap.

In January 2012, Independent JPEG Group published release 8d of its software package and presented the first explicit option for lossless image coding in the popular IJG implementation, as announced in [2]. This act established the framework for anticipated further improvements of this mode for practical usage. Soon thereafter, several other activities intensified the search for effective lossless image compression methods.

In April/May 2012, a new feature was found and implemented in the IJG software which significantly improves the lossless compression of continuous-tone color images, outperforming other currently popular methods and thus making the new feature very attractive for practical application. A development version with the new feature is currently presented by InfAI Leipzig and IJG, and is planned for release as a new major IJG version 9 in January 2013.

The option for lossless compression of continuous-tone color images is an actual requirement for a universal image coding  system.  The new feature closes this gap in the JPEG system.

3 The Approach

Lossless image compression methods usually concentrate on sophisticated prediction, statistical modeling, and bit coding stages ([3], [4]).

In the case of lossy compression, prediction is replaced or simplified by appropriate spatial transformation procedures (DCT in JPEG).

Furthermore, in lossy compression of color images a color space transformation process is added which changes between the RGB color space representation on one side and a color space with separated luminance and chrominance components on the other side (YCC). Due to the different characteristics of these components, better compression can be achieved by adapted coding procedures (subsampling, quantization, entropy classification).

The common transformation procedures for changing between RGB and luminance-chrominance separated YCC representations are not suitable for lossless compression because they are not exactly reversible in computer arithmetics.

Therefore, the advantage of luminance-chrominance separated coding is not or rarely utilized in lossless compression methods and applications. Proposals for reversible color transforms exist but have certain drawbacks and limitations and thus were rarely used so far.

The question is now to find an appropriate color transformation procedure which is reversible for lossless compression application and which does not have the drawbacks and limitations of existing approaches.

The basic property of the given luminance-chrominance separated YCC representations is their “Grayscale-compatibility”, which means: For a pure Grayscale image (with R=G=B), the Y component is Y=R=G=B, and the chrominance components are both constant zero (minimum entropy). The zero value of the chrominance components for Grayscale images means that these are color difference signals.

Now the most simple form of such kind of color transform that is conceivable is apparently a transform which retains one particular of the R,G,B signals unchanged, and subtracts that particular component from the other components. The “particular” component is chosen as the green component G, because it has the largest contribution to Y in the common YCC representations.

So we start with the following forward transform approach:





R

G

B





         R – G

G
         B – G

The transform can be described simply as change from [R,G,B] to [R-G,G,B-G]=[R’,G’,B’] representation. The reverse transform is obviously [R,G,B]=[R’+G’,G’,B’+G’].

The problem with this approach is that it extends the range of values for the transformed R’ and B’ components. Let’s assume that R, G, and B are in the common [0…255] range of unsigned byte values. Then the difference R – G can have following extreme values:

        R  –  G

0 0

         .        .

         .        .

         .        .

255 255

max  min

255 0
   =>
max R – G =  255

min   max

  0     255      =>
min  R – G = -255

So the range of values for the difference R – G is [-255…255] which is twice as large as the original domain [0…255] for R and G and thus requires one additional bit of storage space. This is a problem because the data type “byte” which holds original samples of the image components R, G, and B in this case can not accommodate this.

The same problem occurs with the proposed reversible color transforms in ISO/IEC 15444 | ITU-T T.800 (also known as “JPEG 2000”) and in ISO/IEC 29199 | ITU-T T.832 (also known as “JPEG XR”).

The problem is solved by means of a remapping procedure which reassigns the values of the extended range to the original sample domain.

The basic idea is to notice the fact that it is not required to retain the difference values exactly, but it is only required that the reverse transform gives the original sample values exactly.

For this purpose, we can think of a modified subtraction procedure with operator “~” instead of “–“ which only approximates the subtraction and which has a corresponding reverse operation “modified addition” which only approximates addition:

R ~ G 


B ~ G

There are different possibilities for such kind of modification.

A simple and effective form for such modification is the “modulo calculation”:

The subtraction and addition are performed in the modulo range regarding the original sample domain, which in the case of power-of-2 domains is just a masking operation (bitmask operator AND, or “&” in C) and means that overflowing bits are simply discarded (in unsigned modulo representation – sign extension in signed modulo representation):




R’ = (R – G) AND MAXVAL




B’ = (B – G) AND MAXVAL




R = (R’ + G’) AND MAXVAL




B = (B’ + G’) AND MAXVAL

Another modification, which is similar to the common RGB <=> YCC conversion case, is to add a center value to remap the (signed) differences into the middle of the unsigned sample range, so that the reverting effect of the modulo calculation happens at the ends of the interval with the Grayscale case in the middle, and thus also to adapt to the level-shifted DC representation and entropy coding of values in the other processing stages.

So finally we have the following reversible transformation procedures:




R’ = (R – G + CENTERVAL) AND MAXVAL




G’ = G




B’ = (B – G + CENTERVAL) AND MAXVAL




R = (R’ + G’ – CENTERVAL) AND MAXVAL




G = G’




B = (B’ + G’ – CENTERVAL) AND MAXVAL

4 The Results

We demonstrate the compression results on the well-known Kodak Lossless True Color Image Suite [5]:

	Filename
	PNG

original
	JPEG 9
	JPEG 8
	PNG

(IView best)
	PNG <1>

(IView best)
	JLS

(IView CharLS)
	JLS <1>

(IView CharLS)

	
	.png
	.jpg
	.jpg
	.png
	.png
	.jls
	.jls

	kodim01
	720 K
	574 K
	840 K
	763 K
	587 K
	756 K
	505 K

	kodim02
	604 K
	533 K
	665 K
	605 K
	511 K
	584 K
	451 K

	kodim03
	492 K
	430 K
	558 K
	529 K
	466 K
	503 K
	374 K

	kodim04
	623 K
	544 K
	687 K
	624 K
	534 K
	600 K
	455 K

	kodim05
	768 K
	626 K
	843 K
	791 K
	631 K
	745 K
	538 K

	kodim06
	605 K
	490 K
	686 K
	654 K
	541 K
	656 K
	463 K

	kodim07
	554 K
	473 K
	603 K
	554 K
	484 K
	525 K
	403 K

	kodim08
	770 K
	658 K
	890 K
	772 K
	611 K
	758 K
	545 K

	kodim09
	570 K
	482 K
	641 K
	570 K
	498 K
	565 K
	431 K

	kodim10
	580 K
	500 K
	661 K
	581 K
	504 K
	566 K
	434 K

	kodim11
	607 K
	502 K
	694 K
	622 K
	518 K
	633 K
	448 K

	kodim12
	519 K
	441 K
	594 K
	557 K
	483 K
	551 K
	401 K

	kodim13
	804 K
	642 K
	905 K
	872 K
	672 K
	854 K
	591 K

	kodim14
	676 K
	555 K
	762 K
	724 K
	589 K
	707 K
	500 K

	kodim15
	599 K
	520 K
	649 K
	600 K
	514 K
	561 K
	424 K

	kodim16
	522 K
	433 K
	610 K
	561 K
	481 K
	586 K
	414 K

	kodim17
	588 K
	485 K
	666 K
	611 K
	514 K
	591 K
	433 K

	kodim18
	763 K
	635 K
	816 K
	764 K
	626 K
	729 K
	552 K

	kodim19
	656 K
	537 K
	725 K
	657 K
	546 K
	642 K
	475 K

	kodim20
	481 K
	401 K
	492 K
	495 K
	430 K
	441 K
	359 K

	kodim21
	623 K
	512 K
	690 K
	666 K
	552 K
	651 K
	477 K

	kodim22
	686 K
	600 K
	745 K
	687 K
	580 K
	653 K
	514 K

	kodim23
	545 K
	506 K
	597 K
	546 K
	488 K
	510 K
	416 K

	kodim24
	690 K
	573 K
	760 K
	691 K
	566 K
	659 K
	486 K

	
	14.6 M
	12.3 M
	16.3 M
	15.1 M
	12.6 M
	14.6 M
	10.8 M

	
	100 %
	84 %
	112 %
	103 %
	86 %
	100 %
	74 %

	
	119 %
	100 %
	133 %
	123 %
	102 %
	119 %
	88 %


“PNG original” are the sizes as given on [5].

“JPEG 9” are the results with “cjpeg –rgb1 –block 1 –arithmetic” as given on [6].

“JPEG 8” are the results with “cjpeg –rgb –block 1 –arithmetic” as given on [6].

“PNG (IView best)” are recompressions with the popular image viewer and converter IrfanView using best compression options for “Save as PNG”.

These come out a bit larger than the originals, which indicates that a more optimized PNG encoder was used on [5]. We show these results for comparison purposes.

“JLS (IView CharLS)” are the results with IrfanView’s “Save as JLS”, which is based on the CharLS JPEG-LS implementation and does not support reversible color transforms.

The “PNG <1>” and “JLS <1>” results are special:

These were obtained by preparing uncompressed images with color transformed data and then feeding the given PNG and JLS encoders with these preprocessed images, thus effectively simulating a color transform feature for those codecs.

This can be done because, as described in the chapter before, the given color transform does not expand the data and can thus be performed as a separate preprocessing step on an image before feeding it to the unaltered codec. The codec sees it as a normal image like anything else.

The preprocessing color transform on the uncompressed image was achieved simply by a modified decode of a JPEG 9 color transformed file with disabling the inverse color transform processing.

Below the individual files (uncompressed size per file is 1153 K) are shown a summary row (the total uncompressed size is 27.0 M), and two rows with percentage values relative to the original PNG (and JLS which happens to be the same) and relative to the new JPEG 9 codec. The reference codec is the one with the 100 % value, respectively.

As can be seen from the result table above, the JPEG 9 encoder outperforms all other lossless encoders, except the JPEG-LS with simulated color transform (JLS <1>). Note that all currently available JPEG-LS implementations - open source, commercial, and hardware ones - are based on part 1 of the standard and do not support reversible color transforms. Part 1 of the JPEG-LS standard left it to the applications to perform such transform as a pre/post-processing step ([3]). The CharLS implementation has an option for reversible color transforms by using a custom JPEG APP8 marker which is not compatible with anything else, and the IrfanView encoder does not  support this option.

Only the part 2 of JPEG-LS ([4]) has a valid specification for reversible color transforms, and this is shared by JPEG 9. Notice that JPEG 9 does not share anything else with JPEG-LS, though.

Without the reversible color transform feature, the JPEG-LS performs no better than the original PNG in this suite.

JPEG 9 with reversible color transform is about 16 % smaller than the original PNG and than the JLS without reversible color transform, while JPEG 8 without reversible color transform is about 12 % larger.

The reversible color transform feature also improves the PNG results, as show the simulated color transform results (PNG <1>). They slightly fail to reach the JPEG 9 results, however. Although specifically devised for lossless compression, the PNG entropy coding was optimized for text compression and seems less appropriate for the kind of signals which appear in continuous-tone type images. JPEG and JPEG-LS were specifically designed for such type of images. It requires the use of reversible color transforms to take advantage of this property.

The other JPEG attempts, ISO/IEC 15444 | ITU-T T.800 (also known as “JPEG 2000”) and ISO/IEC 29199 | ITU-T T.832 (also known as “JPEG XR”), suffer from the data expansion of the proposed reversible color transforms as described in the previous chapter.

Other examples

	Filename
	Uncom-

pressed
	JPEG 8
	JPEG 9
	PNG

(IView best)
	PNG <1>

(IView best)
	JLS

(IView CharLS)
	JLS <1>

(IView CharLS)

	
	.bmp
	.jpg
	.jpg
	.png
	.png
	.jls
	.jls

	MY12_T…
	4395 K
	812 K
	517 K
	745 K
	573 K
	698 K
	449 K

	
	
	109 %
	69 %
	100 %
	77 %
	94 %
	60 %

	
	
	157 %
	100 %
	144 %
	111 %
	135 %
	87 %

	Nirve_F…
	2567 K
	664 K
	371 K
	558 K
	420 K
	587 K
	312 K

	
	
	119 %
	66 %
	100 %
	75 %
	105 %
	56 %

	
	
	179 %
	100 %
	150 %
	113 %
	158 %
	84 %

	Lights_F…
	1696 K
	1030 K
	925 K
	924 K
	819 K
	840 K
	727 K

	
	
	111 %
	100.1 %
	100 %
	89 %
	91 %
	79 %

	
	
	111 %
	100 %
	99.9 %
	89 %
	91 %
	79 %


The first two images are high-quality presentations of bicycle models with dimensions of  1500 * 1000 and 1200 * 730 pixels, respectively.

The results are similar to the previously discussed ones, but with even more extreme differences. The JPEG 9 encoder still outperforms all other lossless encoders, except the JPEG-LS with simulated color transform (JLS <1>). The advantage over PNG is more than 30 %. The PNG with simulated color transform (PNG <1>) is more than 10 % larger.

The third image is a low-quality (noisy and fuzzy) snapshot photograph with dimensions of 654 * 884 pixels.

In this case the PNG achieves a slight (0.1 %) advantage over JPEG 9, which is negligible. With simulated color transform, the advantage increases.

JPEG-LS shows clear advantage, as always with simulated color transform, and even without it in this case.

	Filename
	Uncom-

pressed
	JPEG 8
	JPEG 9
	PNG

(IView best)
	PNG <1>

(IView best)
	JLS

(IView CharLS)
	JLS <1>

(IView CharLS)

	
	.bmp
	.jpg
	.jpg
	.png
	.png
	.jls
	.jls

	1282119m
	2305 K
	1002 K
	1030 K
	864 K
	865 K
	1012 K
	997 K

	1arboram
	2305 K
	845 K
	851 K
	782 K
	766 K
	917 K
	886 K

	1d41102m
	2305 K
	700 K
	807 K
	610 K
	630 K
	662 K
	749 K

	
	
	2.48 M
	2.62 M
	2.20 M
	2.20 M
	2.52 M
	2.56 M

	
	
	113 %
	119 %
	100 %
	100 %
	115 %
	116 %

	
	
	100 %
	106 %
	89 %
	89 %
	102 %
	103 %


These are highly artificial computer-generated images, by the fractal generator program Fractint. They also deviate from the continuous-tone type by a limited range of sample values. The image dimensions are 1024 * 768 pixels.

We observe that the reversible color transform does not provide an advantage here - for PNG it is similar, and for JPEG and JPEG-LS it even enlarges the files.

We also observe that PNG outperforms all other lossless encoders here, JPEG 8 comes next, and JPEG-LS performs worst here.

While PNG’s encoding is less appropriate for rather natural and continuous-tone type images, it is better suited for this kind of artificial images.

JPEG-LS performance declines due to its relatively high amount of arithmetic calculations which increases the entropy here, and the reversible color transform adds to this.

JPEG 8 lies inbetween, because it has a smaller amount of arithmetic calculations in its DC coding model than LS. The reversible color transform (JPEG 9) should be avoided in such cases, because it adds arithmetic calculations and increases the entropy. Therefore JPEG 8 is given and used as reference here, rather than JPEG 9.

5 The Realization

We have seen that, for the scope of continuous-tone type color images, the deployment of a reversible color transform is essential for effective lossless compression.

This is not regarded in currently available lossless image coding implementations.

While suitable recommendations and options exist in the JPEG-LS system ([3] and [4]), they are not realized in practical implementations.

The other JPEG attempts, ISO/IEC 15444 | ITU-T T.800 (also known as “JPEG 2000”) and ISO/IEC 29199 | ITU-T T.832 (also known as “JPEG XR”), are not viable because they suffer from the data expansion of the proposed reversible color transforms.

It is therefore crucial for the practical advance in lossless image compression that a viable method as recommended in [3] and specified in [4] is realized in an available image coding implementation. Version 9 of the Independent JPEG Group implementation ([6]) realizes the method as a natural extension in the context of the common JPEG system.

The specification as given in [4] Annex F and G.1.2.8 is used.

Note that we do not use the same example transform as given in F.2, but a simplified modification of it (other transforms, like the one given as example in the specification, did not yield better results in the JPEG context). We also use different component identifiers which are more suitable in the context of the JPEG system (the identifiers given as example in the specification are not suitable because they are already used for the JFIF YCbCr colorspace components).

Thus, our inverse transform specification marker segment is constructed as follows:

FF F8
# LSE marker

00 18
# Length of marker segment = 24 bytes including the length field

0D
# ID=X'0D', inverse transform specification marker segment

00 FF
# MAXTRANS=MAXJSAMPLE

03
# Nt=3

47
# ID of first component in the transform (‘G’)

52
# ID of second component in the transform (‘R’)

42
# ID of third component in the transform (‘B’)

80
# F1: CENTER1=1, NORM1=0

00 00
# A1,1=0

00 00
# A1,2=0
00
# F2: CENTER2=0, NORM2=0

00 01
# A2,1=1

00 00
# A2,2=0

00
# F3: CENTER3=0, NORM3=0

00 01
# A3,1=1

00 00
# A3,2=0

- 2 -

